RESOURCE-SAVING ELEMENTS OF DRIP IRRIGATION TECHNOLOGY OF INTENSIVE CHERRY PLANTATIONS (CERASUS AVIUM MOENCH.) IN THE CONDITIONS OF THE SOUTHERN STEPPE OF UKRAINE
DOI: 10.35205/0558-1125-2022-77-111-119
UDC 631.674.6:634.232:477.7
RESOURCE-SAVING ELEMENTS OF DRIP IRRIGATION TECHNOLOGY OF INTENSIVE CHERRY PLANTATIONS (CERASUS AVIUM MOENCH.) IN THE CONDITIONS OF THE SOUTHERN STEPPE OF UKRAINE
MALIUK T.V., KOZLOVA L.V., PhDs
M.F. Sydorenko Melitopol Research Station of Horticulture of the Institute of Horticulture, NAAS of Ukrain, 72311, Melitopol, 99, Vakulenchuk St., e-mail: iosuaan@zp.ukrtel.net
The research is dedicated to establishing the parameters of the micro-irrigation regime in cherry orchards in the south of Ukraine using meteorological indicators and the amount of evapotranspiration as a basis for further determining the optimal irrigation regime.
Field experiments were conducted in 2019-2020 on the lands of the M.F. Sydorenko Melitopol Research Station of Horticulture of the Institute of Horticulture, NAAS of Ukrain. In the investigation the following variants of the experiment are provided: a control variant – natural moistening, variants with the use of irrigation at pre-irrigation soil moisture level (PISML) of 70 % of least soil moisture (LSM) at different moisture layers of 0.4 m, 0.6 m, and 0.8 m, and variants with deficient irrigation at 100 %, 75 % and 50 % evapotranspiration compensation (ET0).
As a result of research, it was established that the compensation of evapotranspiration (ET0) at the level of 75 % determines the maintenance of soil moisture in a layer of 0.6 m not lower than 67-70 % HB. The deviations of irrigation rates between this option and the PISML of 70 % LSM (0.6 m) do not exceed 6 % due to the increase in irrigation efficiency. Maintenance of 70 % LSM in the 0.4 m layer and at 50 % ET0 leads to a weakening of cherry production processes, which indicates the inconsistency of such a moisture regime with the biological requirements of cherry culture. The advantages of the irrigation regime for PISML 70 % LSM in a layer of 0.8 cm and for 100 % ET0 in terms of influence on cherry production processes were not revealed. At the same time, water consumption increases by 28-33 % due to a decrease in irrigation efficiency relative to compliance with this moisture regime in a layer of 0.6 m. The best indicators of irrigation efficiency were in the options of 75 % ET0 - 2.8 kg/m3 and with PISML 70 % LSM (0.6 m) – 2.2 kg/m3. Such data indicate the expediency of using the calculation method for determining the irrigation regime of cherry trees, as an alternative to the thermostatic-weight method.
In connection with this, for the management of the irrigation regime of the southern light loamy chernozem in cherry plantations, an algorithm for determining the terms and rates of irrigation using monitoring of agroclimatic indicators (average daily temperature and relative air humidity, amount of precipitation) and calculation of ET0 is proposed. The irrigation period in cherry plantations begins when the pre-irrigation moisture level of the root-containing layer of light loam soil (0.6 m) drops to 70 % LSM using the thermostatic-weight method or using devices for determining the moisture content in the soil.
Key words: drip irrigation, sweet cherry trees planting, southern black soil, irrigation regime, total water consumption, evaporation.
Список використаної літератури
1. Ястреб Г.В. Локальное орошение косточковых культур. Садоводство и виноградарство. 1988. № 6. С.13-15.
2. Водяницький В.І., Литвиненко А.Ф., Мотін В.С. Проблема та перспективи зрошення садів в Україні. Садівництво. 2001. Вип. 53. С. 254-257.
3. Горбач М. М., Козлова Л.В. Підвищення ефективності мікрозрошення плодових культур на півдні України. Садівництво. 2012. Вип. 66. С. 182-188.
4. Малюк Т.В., Козлова Л.В., Пчолкіна Н.Г. Оптимізація водного режиму ґрунту в інтенсивних насадженнях черешні за краплинного зрошення за мульчування. Зрошуване землеробство. 2019. Вип. 72. С.34-39.
5. Combining multi-agent systems and wireless sensor networks for monitoring crop irrigation / Gabriel Villarrubia, Juan F. De Paz, Daniel H. De La Iglesia, Javier Bajo. Sensors. 2017. 17(8). P. 1775. DOI: 10.3390/s17081775.
6. CFAES 2018 eFields Report: Ohio State Digital Ag Program. (Jan. 2019). The Ohio State University. Р. 26-27.
7. Остапчик В.П., Костромин В.А., Коваль А.М. Информационно-советующая система управления орошением. Киев: Урожай, 1989. 248 с.
8. Використання інформаційної системи «ГІС Полив» та модулю IRRIMET інтернет-метеостанції для оперативного планування зрошення при дощуванні / Жовтоног О.І., Філіпенко Л.А., Деменкова Т.Ф., Діденко Н.О. Таврійський науковий вісник. 2015. № 92. С.159-165.
9. Using smart technologies in irrigation management / Gadzalo Ya. et al. In International Commission on irrigation and drainage, 3nd World Irrigation Forum (WIF3), September, 2019. P. 1-6. Id: W.1.3.02.
10. Influence of post-harvest deficit irrigation and pre-harvest fruit thinning on sweet cherry (cv. New Star) fruit firmness and quality / Marsal J. et al. The Journal of Horticultural Science and Biotechnology. 2009. Vol. 84, Is. 3. Р. 273-278. DOI: 10.1080/14620316.2009.11512516.
11. Regulated deficit irrigation (RDI) to save water and improve Sauvignon Blanc quality / Greven M. et al. Water Sci Technol. 2005. 51(1). Р. 9-17.
12. Goodwin I., Boland A.-M. Scheduling deficit irrigation of fruit trees for optimizing water use efficiency. Deficit irrigation practices. Land and Water Development Div. Rome (Italy): FAO, 2002. P. 67-78.
13. Koech R., Langat P. Improving irrigation water use efficiency: a review of advances, challenges and opportunities in the Australian context. Water. 2018. Vol. 10, Is. 12. P. 1771. DOI: 10.3390/w10121771.
14. Tan Q., Zhang S., Li R. Optimal Use of Agricultural Water and Land Resources through Reconfiguring Crop Planting Structure under Socioeconomic and Ecological Objectives. Water. 2017. Vol. 9, Is. 7. P. 488. DOI: 10.3390/w9070488.
15. Monteleone S., de Moraes E. A., Maia R. F. Analysis of the variables that affect the intention to adopt Precision Agriculture for smart water management in Agriculture 4.0 context. Global IoT Summit (GIoTS). Aarhus, Denmark, 2019. DOI:10.1109/GIOTS.2019.8766384.
16. Soil moisture distribution under different lateral and dripper spacing of surface drip irrigation system in clay loam soil / Sanjay Singh Chouhan, M. K. Awasthi, R. K. Nema, L.D. Koshta. International Journal of Agriculture. Environment and Biotechnology Citation, September, 2015. IJAEB. 8(3). P. 743-751. DOI: 10.5958/2230-732X.2015.00082.0.
17. Micro-irrigation strategies to improve water-use efficiency of cherry trees in Northern China / Liao Renkuan et al. Agricultural Water Management. Elsevier. 2019. Vol. 221(C). P. 388-396.
18. Evaluation of water uptake and root distribution of cherry trees under different irrigation methods / Pingfeng Li et al. Water. 2019. 11(3). P. 495. DOI: 10.3390/w11030495.
19. Водяницкий В.И., Расторгуев А.Б., Позднякова Т.П. Корневая система яблони при разных способах полива. Садоводство и виноградарство. 1998. № 3. С. 5-6.
20. Yin X., Seavert C., le Roux J. Responses of irrigation water use and productivity of sweet cherry to single-lateral drip irrigation and ground covers. Soil Science. 2011. № 176. Р. 39-47.
21. Effects of organic mulches on soil microfauna in the root zone of apple: implications for nutrient fluxes and functional diversity of the soil food web / Forge T. A, Hogue E., Neilsen G., Neilsen D. Applied Soil Ecology. 2003. 22(1). Р. 34-54. DOI: 10.1016/S0929-1393(02)00111-7.
22. Influence of rootstocks on different sweet cherry cultivars and accumulation of heavy metals in leaves and fruit / Stachowiak A., Bosiacki M., Świerczyński S., Kolasiński M. Hort. Sci. (Prague). 2014. № 42 (4). Р. 193-202.