CONSUMER AND BIOLOGICALLY ACTIVE QUALITY INDICATORS OF SUBLIMATED FRUITS AND BERRIES
DOI: 10.35205/0558-1125-2022-77-162-171
UDC 57.086.13:664.853:006.83
CONSUMER AND BIOLOGICALLY ACTIVE QUALITY INDICATORS OF SUBLIMATED FRUITS AND BERRIES
Yu.Yu. VINTSKOVSKA, PhD
R.I. HRYNYK, Post Graduate Student
Institute of Horticulture, NAAS of Ukraine, 03027, Kyiv-27, str. Sadova, 23, e-mail: yuliyavintskovskaya@gmail.com
The article describes in detail the technological process of lyophilization and the stages of which it consists, namely: product preparation, freezing, sublimation, which is divided into primary and secondary drying, and packaging of the dried product.
During the theoretical study of the question of the influence of sublimation on the quality of products, the ambiguity of the data was established, which contributes to further, more detailed study, taking into account varietal and weather factors. For example, a number of scientists Pérez-Gregorio, Robles-Sánchez R.M., Patthamakanokporn O., Pérez-Gregorio M.R., Pérez-Gregorio M.R., Rodrigues A.S., Que F., Mao L., Wojdylo A., Figiel A., Wojdylo A., Figiel A., Skrovankova S., Sumczynski D., Wojdyło A., Figiel A. note that post-harvest processes, including various types of fruit drying, negatively affect their chemical composition, in particular, the content of vitamin C, polyphenols and their antioxidant activity. The claim of a high percentage of ascorbic acid retention in freeze-dried fruits was confirmed by Dario Donno, Rupasinghe H.V., Fernandes F.A.N., Hawlader M.N.A.
Studies on the effect of lyophilization on changes in the polyphenolic complex and bioactivity of fruits are quite controversial. Researchers Scheuermann E. et all proved that phenolic content and antioxidant activity increased during sublimation, while Kaya, Skrovankova S., Değirmencioğlu N. reported that drying fruits during the production of snacks does not significantly change their qualitative polyphenolic profile. The fact of an increase in the polyphenolic complex in freeze-dried blueberries was proven by the American researcher Esteban I. Other data contradicting the above data were obtained in the course of their research by researchers Paes J., Dotta R., who note that lyophilization reduces the amount of phenolic compounds.
Key words: sublimation (liophilization), fruits, vitamin C, sugars, titrated acids, polyphenolic substances, anthocyanins.
Список використаної літератури
1. Ratti C., Araya-Farias M. Advances in Food Dehydration. In Dehydration of Foods. CRC Press: Boca Raton. FL. USA, 2009. 468 p.
2. Dandamrongrak R., Young G., Mason R. Evaluation of various pre-treatments for the dehydration of banana and selection of suitable drying models. Journal of Food Engineering. 2002. V. 55 (2). P. 139-146. DOI: 10.1016/S0260-8774(02)00028-6.
3. Effects of drying methods on the nutritional aspects, flavor, and processing properties of Chinese chestnuts / Zhang L. et al. Journal of Food Science and Technology. 2018. V. 55. P. 3391-3398. DOI: 10.1007/s13197-018-3227-6.
4. Comparison of quality and microstructure of chokeberry powders prepared by different drying methods, including innovative fluidised bed jet milling and drying / Sadowska A., Świderski F., Rakowska R., Hallmann E. Food Science and Biotechnology. 2019. V. 28. P. 1073-1081. DOI: 10.1007/s10068-019-00556-1.
5. Sadowska A., Świderski F., Hallmann E. Bioactive, physicochemical and sensory properties as well as microstructure of organic strawberry powders obtained by various drying methods. Applied Sciences. 2020. V. 10. P. 4706. DOI: 10.3390/app10144706.
6. Effect of thermal and non thermal processing technologies on the bioactive content of exotic fruits and their products: Review of recent advances / Rawson A. et al. Food Research International. 2011 V. 44. P. 1875-1887. DOI: 10.1016/j.foodres.2011.02.053.
7. Shahidi F., Tan Z. Raisins: Processing, phytochemicals, and health benefits. Dried Fruits. 2013. P. 372-392. DOI: 10.1002/9781118464663.ch20.
8. Alasalvar C., Shahidi F. Dried Fruits: Phytochemicals and Health Effects. NJ : Wiley-Blackwell. Hoboken, 2013. 508 p. DOI:10.1002/9781118464663
9. Alasalvar C., Shahidi F. Composition, phytochemicals, and beneficial health effects of dried fruits: An overview. In Dried Fruits: Phytochemicals and Health Effects. NJ : Wiley-Blackwell: Hoboken, 2013. P. 1-19. https://doi.org/10.1002/9781118464663.ch1.
10. Turan A. Effect of drying methods on nut quality of hazelnuts (Corylus avellana L.). Journal of Food Science and Technology. 2018. V. 55. P. 4554-4565. DOI: 10.1007/s13197-018-3391-8.
11. Поповський В.Г. Сублимационная сушка пищевых продуктов растительного происхождения. Москва, 1975. 329 с.
12. Marques L.G., Prado M.M., Freire J.T. Rehydration characteristics of freeze-dried tropical fruits. Journal of Food Science and Technology. 2009. V. 42. № 7. P.1232-1237. DOI: 10.1016/j.lwt.2009.02.012.
13. Ratti C. Hot air and freeze-drying of high-value foods: a review. Journal of food Engineering. 2001.V. 49. Is. 4. P. 311-319. DOI: 10.1016/S0260-8774(00)00228-4.
14. Fischer U. A., Carle R., Kammerer D. R. Identification and quantification of phenolic compounds from pomegranate (Punica granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD-ESI/MSn. Food Chemistry. 2011. V. 127. №. 2. P. 807-821. DOI: 10.1016/j.foodchem.2010.12.156.
15. Traditional and unconventional dried fruit snacks as a source of health-promoting compounds / Donno Dario et al. Antioxidants. 2019. V.8(9). P. 396. DOI: 10.3390/antiox8090396.
16. Okechukwu Jon-nwakalo. Food Security in Nigeria: Freeze Drying. Seminar Food Science, 2014. 22 p. URL: https://www.academia.edu/9078355/Food_Security_in_Nigeria_Freeze_Drying (дата звернення: ¬¬¬¬¬¬¬¬¬¬¬¬¬¬ 30.05.2022)
17. Di Scala K. C., Crapiste G. H. Drying kinetics and qualitychanges during drying of red pepper. Food Science and Technology Lebensmittel-Wissenschaft und Technologie. 2008. 41(5). P. 789-795. DOI: 10.1016/j.lwt.2007.06.007.
18. Properties and microstructure of blackcurrant powders prepared using a new method of fluidized-bed jet milling and drying versus other drying methods / Sadowska A. et al. CyTA-Journal of Food. 2019. V. 17. P. 439-446. DOI: 10.1080/19476337.2019.1596985.
19. Pérez-Gregorio M.R., Garcia-Falcon M.S., Simal-Gandara J. Flavonoids changes in fresh-cutonions during storage in different packaging systems. Food Chemistry. 2011. V. 124. P. 652-658. DOI: 10.1016/J.FOODCHEM.2010.06.090.
20. Influence of alcoholic fermentation process on antioxidant activity and phenolic levels frommulberries (Morus nigra L.) / Pérez-Gregorio M.R. et al. LWT-Food Science and Technology. 2011. V. 44. P. 1793-1801. DOI: 10.1016/j.lwt.2011.03.007.
21. Changes in antioxidant flavonoids during freeze-drying of red anions and subsequent storage / Pérez-Gregorio M.R. et al. Food Control. 2011. V. 22. P. 1108-1113. DOI: 10.1016/j.foodcont.2011.01.006.
22. Changes of antioxidant activity and total phenolic compounds during storage of selected fruits / Patthamakanokporn O., Prapasri P., Anadi N., Prapaisri P.S. Journal of Food Composition and Analysis. 2008. V. 21. P. 241-248. DOI: 10.1016/j.jfca.2007.10.002.
23. Effect of curing and cooking on flavonols and anthocyanins in traditional varieties of onion bulbs / Rodrigues A.S., Pérez-Gregorio M.R., García-Falcón M.S., Simal-Gándara J. Food Research International .2009. V. 42. P. 1331-1336. DOI: 10.1016/J.FOODRES.2009.04.005.
24. Comparison of hot air-drying and freeze-drying on the physicochemical properties and antioxidant activities of pumpkin (Cucurbita moschata Duch.) flours / Que F., Mao L., Fang X., Wu T. International Journal of Food Science and Technology. 2008. V. 43. P. 1195-1201. DOI: 10.1111/j.1365-2621.2007.01590.x.
25. Effect of convective and vacuum–microwave drying on the bioactive compounds, color, and antioxidant capacity of sour cherries. A. Wojdyło, A. Figiel, K. Lech, P. Nowicka, J. Oszmiański . Food Bioprocess Technology. 2013. V. 7. P. 829-841. DOI: 10.1007/s11947-013-1130-8.
26. Wojdylo A., Figiel A., Oszmiański J. Effect of drying methods with the application of vacuum microwaves on the bioactive compounds, color, and antioxidant activity of strawberry fruits. Journal of Agriculture and Food Chemistry. 2009. V. 57. P.1337-1343. DOI: 10.1021/jf802507j.
27. Sumczynski D., Mlcek J., Jurikova T., Sochor J. Bioactive compounds and antioxidant activity in different types of berries / Skrovankova S. et al. International journal of Molecular Sciences. 2015. V. 16. P. 24673-24706. DOI: 10.3390/ijms161024673.
28. Effect of operating conditions in freeze-drying on the nutritional properties of blueberries / Reyes Alejandro et al. International Journal of Food Sciences and nutrition. 2011.V. 62. P. 303-306. DOI: 10.3109/09637486.2010.534078.
29. Effect of air temperature on drying kinetics, vitamin C, antioxidant activity, total phenolic content, non-enzymatic browning and firmness of blueberries variety O’Neil / López J. et al. Food and Bioprocess Technology. 2010. V. 3. P. 772-777. DOI: 10.1007/s11947-009-0306-8.
30. Bioactivity and sensory properties of probiotic yogurt fortified with apple pomace flour / Jovanovic M. et al. Foods. 2020. V. 9. № 6. P. 763.
31. Effect of drying on the bioactive compounds, antioxidant, antibacterial and antityrosinase activities of pomegranate peel / Mphahlele R. R., Fawole O. A., Makunga N. P., Opara U. L. BMC Complementary and Alternative Medicine. 2016. V. 16. № 1. P. 143. DOI: 10.1186/s12906-016-1132-y.
32. Effect of freeze-drying on apple pomace and pomegranate peel powders used as a source of bioactive ingredients for the development of functional yogurt / Munir Ahmed et al. Journal of Food Quality. 2022. Article ID 3327401. 9 p. DOI: 10.1155/2022/3327401.
33. Lyophilization/Freeze Drying - An Review / Nireesha G.R. et al. International Journal of Novel Trends in Pharmaceutical Sciences. 2013. 3(4). P. 87-98.
34. Effects of drying and grinding in production of fruit and vegetable powders: A review / Karam M.C. et al. Journal of Food Engineering. 2016. V. 188. P. 32-49. DOI: 10.1016/j.jfoodeng.2016.05.001.
35. Bruttini R., Liapis A. I. Freeze Drying. Handbook of Industrial Drying. CRC Press, 2007. 1276 p.
36. Samaticha J., Wojdylo A. The influence of different the drying methods on chemical composition and antioxidant activity in chokeberries. LWT - Food Science and Technology. 2016. V. 66. P. 484-489. DOI: 10.1016/j.lwt.2015.10.073.
37. Drying of exotic tropical fruits: a comprehensive review / Fernandes F.A.N., Rodrigues S., Law C.L., Mujumdar A.S. Food Bioprocess Technology. 2011. V. 4. P. 163-185. DOI: 10.1007/s11947-010-0323-7.
38. Rupasinghe H.V., Joshi A.P. Phytochemicals and health benefits of dried apple snacks. Dried Fruits: Phytochemicals and Health Effects. NJ : Wiley-Blackwell. Hoboken, 2013. P. 211-225. DOI: 10.1002/9781118464663.ch11
39. Drying of guava and papaya: Impact of different drying methods / Hawlader M.N.A., Perera C.O., Tian M., Yeo K.L. Drying Technology. 2006. V. 24. P. 77-87. DOI: 10.1080/07373930500538725.
40. Impact of drying methods on the quality of bioactive components in tree tomato (Cyphomandra betacae) / Dillwyn Stephen, Kulastic Jassy Antony, Pragalyaashree Maripillai Munusamy, Tiroutchelvame Deivanayagame. Trends in Sciences. 2022. V. 19. № 2. P. 2060. DOI: 10.48048/tis.2022.2060.
41. Effect of freeze-drying on the antioxidant compounds and antioxidant activity of selected tropical fruits / Norshahida Mohamad Shofian et al. International journal of Molecular Sciences. 2011. V. 7. Р. 678-4692. DOI: 10.3390/ijms12074678.
42. Bioactive compounds and antioxidant activity in different types of berries / Skrovankova S. et al. International journal of Molecular Sciences. 2015. V. 16. P. 24673-24706. DOI: 10.3390/ijms161024673.
43. Joshi A., Rupasinghe H., Khanizadeh S. Impact of drying processes on bioactive phenolics, vitamin C and antioxidant capacity of red-fleshed apple slices. Journal of food processsng and preservation. 2011. V. 35, Is. 4. P. 453-457. DOI: 10.1111/j.1745-4549.2010.00487.x.
44. Joshi A., Rupasinghe H., Pitts N. Comparison of nonfried apple snacks with commercially available fried snacks. Food science and technology international. 2011. V. 17, Is. 3. P.249-255. DOI: 10.1177/1082013210382337.
45. Effect of tartaric acid and dietary fibre from sun-dried raisins on colonic function and on bile acid and volatile fatty acid excretion in healthy adults / Spiller G.A. et al. British journal of nutrition. 2003. V. 90. P. 803-807. DOI: 10.1079/BJN2003966.
46. Total antioxidant capacity of spices, dried fruits, nuts, pulses, cereals and sweets consumed in Italy assessed by three different in vitro assays / Pellegrini N. et al. Molecular nutrition food research. 2006. V. 50. P. 1030-1038. DOI: 10.1002/mnfr.200600067.
47. Evolution of aroma compounds of murtilla fruits (Ugni Molinae Turcz) during storage / Scheuermann E. et al. Journal of the science of food and agriculture. 2008. V. 88. P. 485-492. DOI: 10.1002/JSFA.3111.
48. Influence of hot air drying on phenolic compounds and antioxidant capacity of blueberry (Vaccinium myrtillus) fruit and leaf / Değirmencioğlu N., Gürbüz O., Karatepe G.E., Irkin R. Journal of applied botany and food quality. 2017. V. 90. P.115-125. DOI: 10.5073/JABFQ.2017.090.014.
49. Kaya A., Aydın O., Kolaylı S. Effect of different drying conditions on the vitamin C (ascorbic acid) content of Hayward kiwifruits (Actinidia deliciosa Planch). Food Bioproduct Processing. 2010. V. 88. P. 165-173. DOI: 10.1016/j.fbp.2008.12.001.
50. Improving nutritional value of dried blueberries (Vaccinium corymbosum L.) combining microwave-vacuum, hot-air drying and freeze drying technologies / Esteban I. Mej´ıa-Meza et al. International journal of food engineering. 2008. V. 4, Is. 6. P. 34. DOI:10.2202/1556-3758.1364.
51. Extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium myrtillus L.) residues using supercritical CO2 and pressurized liquids / Paes J., Dotta R., Barbero G.F., Martínez J. Journal of supercritical fluids. 2014. V. 95. P. 8-16. DOI:10.1016/j.supflu.2014.07.025.