
THE IMPACT OF CLIMATE CHANGE IN VITICULTURE AND POTENTIAL ADAPTATIONS
DOI: 10.35205/0558-1125-2024-79-106-128
UDC 634.8:551.58
THE IMPACT OF CLIMATE CHANGE IN VITICULTURE (VITIS VINIFERA L.) AND POTENTIAL ADAPTATIONS
A. SHTIRBU, PhD
G. LIASHENKO, Doctor, Professor
M. BUZOVSKAIA, PhD
NSC " «V.Ye. Tairov Institute of Viticulture and Winemaking»", NAAS of Ukraine, Odesa
e-mail: vvv_tair@ukr.net
The article analyzes literary sources reflecting scientific problems of modern viticulture theory, practice and prospects. The main responses of grapevines to climate change and the main strategies for adapting grapevines to conditions of soil moisture deficit in areas with limited natural moisture have been identified. The topicality of the study of the problem of stabilization of grape culture at optimization of parameters of vine training system, its feeding area and agrotechnics in vineyards for the purpose of adaptation to changes in environmental conditions has been established.
As a result of global warming, which is occurring in the territories of most viticultural regions, the soil moisture deficit is increasing and the water regime of grapevines is deteriorating. There are at least four strategies that can provide effective grape growing under such conditions. Irrigation, changing the boundaries of winegrowing regions, introducing new varieties and rootstocks, and applying technologies for the rational use of environmental water resources can ensure sustainable agricultural production in the long term.
At first glance, the strategy of transferring the grapevine to new growing areas suitable for thermal availability is not very complicated. However, the study allows us to draw conclusions about the possible risks of a drop in temperature during the winter period to critical values for the grapes in the case of a transfer of the culture to more northern regions.
The use of new varieties and cultivation technologies that ensure efficient use of environmental water resources in traditional wine-growing areas does not require significant material and technical costs compared to irrigation in plantations. These strategies not only conserve resources, but also greatly simplify agricultural production and conserve freshwater resources. All of this is due to the reduction of capital investment for the establishment of vineyards and a shorter payback period, which is essential in the current market economy.
Key words: viticultural, agrobiology, drought resistance, heat resistance, irrigation, cultivar, rootstock, agrotechnics.
Список використаної літератури
1. Jones G.V., Reyd R., Vilks A. Climate, grapes, and wine: structure and suitability in a variable and changing climate. The Geography of Wine. Haarlem, 2012. P. 109-133. DOI:10.1007/978-94-007-0464-0_7
2. Иевлев М. М. Очерки античной палеоэкологии Нижнего Побужья и Нижнего Поднепровья. Київ, 2014. 276 с.
3. Винокуров Н.И. Агроклиматизация винограда и начальный этап развития виноградарства в Северном Причерноморье. Боспорские исследования. 2001. Вып. 1. С. 4-22.
4. Макаренко П.П. Очерки истории виноградарства Бессарабии и Левобережного Поднестровья. Кишинев, 1988. 262 с.
5. Leeuwen C., Darriet P. The impact of climate change on viticulture and wine quality. Journal of Wine Economics. 2016. Vol. 11, No. 1. P. 150-167. DOI:10.1017/jwe.2015.21
6. Schultz H. Climate change and viticulture: A European perspective on climatology, carbon dioxide and UV-B effects. Australian Journal of Grape and Wine Research. 2000. Vol. 6, No. 1. P. 2-12. DOI: 10.1111/j.1755-0238.2000.tb00156.x
7. The challenging issue of climate change for sustainable grape and wine production / Ollat N., Leeuwen C., Cortazar-Atauri I., Touzard J. OENO One. 2017. Vol. 51, No 2. P. 59-60. DOI: 10.20870/oeno-one.2017.51.2.1872
8. Hardie W. Grapevine biology and adaptation to viticulture. Australian Journal of Grape and Wine Research. 2000. Vol. 6, No. 2. P. 74-81. DOI: 10.1111/j.1755-0238.2000.tb00165.x
9. Moore J.P. Methodologies and Results in Grapevine Research. Journal of Wine Research. 2013. Vol. 4(1). P. 77-84. DOI:10.1080/09571264.2013.764669
10. Keller M. Managing grapevines to optimise fruit development in a challenging environment: a climate change primer for viticulturists. Australian Journal of Grape and Wine Research. 2010. Vol. 16, No. 1. P. 56-69. DOI: 10.1111/j.1755-0238.2009.00077.x
11. Rienth M., Scholasch T. State-of-the-art of tools and methods to assess vine water status. OENO One. 2019. Vol. 4. P. 619-637. DOI: 10.20870/oeno-one.2019.53.4.2403
12. Кулюбакін В. Кліматичні зміни та їх наслідки. Farmer. 2008. № 2. С.8-9.
13. Global climate analogues for winegrowing regions in future periods: projections of temperature and precipitation / L. Webb et al. Australian Journal of Grape and Wine Research. 2013. Vol. 19, No. 3. P. 331-341. DOI: 10.1111/ajgw.12045
14. Puscalau M., Bosoi I., Dirloman C. Research on climate trends in the area of odobeşti vineyard. Scientific Papers. Series B, Horticulture. 2021. Vol. LXV, No. 1. P. 334-341.
15. Study of the impact of climate change on the quantity and quality of harvest in the murfatlar vineyard conditions / I. Dina et al. Scientific Papers. Series B, Horticulture. 2019. Vol. LXIII, No. 1. P. 205-210.
16. Research regarding the behavior of clonal feteasca neagra 10 pt to local climate changes / M. Stroe et al. Scientific Papers. Series B. Horticulture. 2013. Vol. LVII. P. 229-234.
17. Climate change impacts for Ukraine / Wilson L., New S., Daron J., Golding N. Met Office. 2021. 34 p. URL: https://www.metoffice.gov.uk (дата звернення: 15.06.2024)
18. Petrie P., Clingeleffer P. Effects of temperature and light (before and after budburst) on inflorescence morphology and flower number of Chardonnay grapevines (Vitis vinifera L.). Australian Journal of Grape and Wine Research. 2005. Vol. 11, No. 1. P. 59-65. DOI: 10.1111/j.1755-0238.2005.tb00279.x
19. Bonada M., Sadras V. Review: critical appraisal of methods to investigate the effect of temperature on grapevine berry composition. Australian Journal of Grape and Wine Research. 2015. Vol. 21, No. 1. P. 1-17. DOI: 10.1111/ajgw.12102
20. Advancement of grape maturity: comparison between contrasting cultivars and regions / W. Cameron et al. Australian Journal of Grape and Wine Research. 2020. Vol. 26, No. 1. P. 53-67. DOI: 10.1111/ajgw.12414
21. Viticulture in Portugal: A review of recent trends and climate change projections / H. Fraga et al. OENO One. 2017. Vol. 51, No. 2. P. 61-69. DOI: 10.20870/oeno-one.2017.51.2.1621
22. Grapevine phenology in France: from past observations to future evolutions in the context of climate change / Cortázar-Atauri I. et al.. OENO One. 2017. Vol. 51, No. 2. P. 115-126. DOI: 10.20870/oeno-one.2017.51.2.1622
23. Statistical modelling of grapevine phenology in Portuguese wine regions: observed trends and climate change projections / H. Fraga et al.. Journal of Agricultural Science. 2016. Vol. 154, No. 1. P. 795-811. DOI:10.1017/S0021859615000933
24. Ramos M., Jones G., Yuste J. Phenology of Tempranillo and Cabernet-Sauvignon varieties cultivated in the Ribera del Duero DO: observed variability and predictions under climate change scenarios. OENO One. 2018. Vol. 52, No. 1. P. 31-44. DOI: 10.20870/oeno-one.2018.52.1.2119
25. Temperature-based zoning of the Bordeaux wine region / B. Bois et al. OENO One. 2018. Vol. 52, No. 4. P. 291-306. DOI: 10.20870/oeno-one.2018.52.4.1580
26. The effect of climate on Burgundy vintage quality rankings / Davis R., Dimon R., Jones G., Bois. OENO One. 2019. Vol. 53, No. 1. P. 59-73. DOI: 10.20870/oeno-one.2019.53.1.2359
27. Effect of post-veraison source limitation on the accumulation of sugar, anthocyanins and seed tannins in Vitis vinifera cv / I. Filippetti et al. Sangiovese berries. Australian Journal of Grape and Wine Research. 2015. Vol. 21, No. 1. P. 90-100. DOI: 10.1111/ajgw.12115
28. Gambetta G., Kurtural S. Global warming and wine quality: are we close to the tipping point? OENO One. 2021. Vol. 55, No. 3. P. 353-361. DOI: 10.20870/oeno-one.2021.55.3.4774
29. Molitor D., Junk J. Climate change is implicating a two-fold impact on air temperature increase in the ripening period under the conditions of the Luxembourgish grapegrowing region. OENO One. 2019. Vol. 53, No. 3. P. 409-422. DOI: 10.20870/oeno-one.2019.53.3.2329
30. Impact of elevated temperature and water deficit on the chemical and sensory profiles of Barossa Shiraz grapes and wines / M. Bonada et al. Australian Journal of Grape and Wine Research. 2015. Vol. 21, No. 2. P. 240-253. DOI: 10.1111/ajgw.12142
31. Bucur G., Dejeu L. Researches on situation and trends in climate change in south part of romania and their effects on grapevine. Scientific Papers. Series B, Horticulture. 2017. Vol. LXI. P. 243-248.
32. Growing Season Climate Variability and its Influence on Sauvignon Blanc and Pinot Gris Berries and Wine Quality: Study Case in Romania (2005-2015) / Nistor E., Dobrei A., Dobrei A., Camen D. South African Journal of Enology and Viticulture. 2018. Vol. 39, No. 2. P. 196-207. DOI: 10.21548/39-2-2730
33. An Update on the Impact of Climate Change in Viticulture and Potential Adaptations / C. Leeuwen et al. Agronomy. 2019. Vol. 514, No. 9. P. 2-21. DOI: 10.3390/agronomy9090514
34. Champagnol F. Elements de Physiologie de la Vigne et de Viticulture Generale. Montpellier, 1984. 381 p.
35. Гончаров В.М., Шеин Е.В., Фаустова Е.В. Агрофизические исследования почвенного покрова: учебник. Москва, 2019. 121 с. DOI:10.31453/kdu.ru.91304.0100
36. Düring H. CО2 assimilation and photorespiration of grapevine leaves: Responses to light and drought. Vitis. 1988. Vol. 27. P. 199-208. DOI: 10.5073/vitis.1988.27.199-208
37. Дерендовская А., Штирбу А. Физиологические особенности привитых растений винограда: монография. Саарбрюкен, 2013. 140 с.
38. Adaptative anatomical characteristics of grapevine leaf in the south of Tunisia / A. Salem-Fnayou et al. OENO One. 2005. Vol. 39, No. 1. P. 11-18. DOI: 10.20870/oeno-one.2005.39.1.904
39. Effects of water stress on dry matter content and partitioning in four grapevine cultivars (Vitis vinifera L.) / Gómez-del-Campo M., Baeza P., Ruiz C., Lissarrague J. OENO One. 2005. Vol. 39. No. 1. P. 1-10. DOI: 10.20870/oeno-one.2005.39.1.905
40. Shange L. Effects of Soil Parent Material and Climate on the Performance of Vitis vinifera L. cvs. Sauvignon blanc and Cabernet Sauvignon - Part II. Climate, Leaf Analysis, Juice Analysis and Wine Quality. South African Journal of Enology and Viticulture. 2012. Vol. 33, No. 2. P. 174-183.
41. Shange L., Conradie W. Effects of Soil Parent Material and Climate on the Performance of Vitis vinifera L. cvs. Sauvignon blanc and Cabernet Sauvignon - Part I. Soil Analysis, Soil Water Status, Root System Characteristics, Leaf Water Potential, Cane Mass and Yield. South African Journal of Enology and Viticulture. 2012. Vol. 33, No. 2. P. 161-173. DOI: 10.21548/33-2-1116
42. Gaudillère J.P., Leeuwen C.V., Ollat N. Carbon isotope composition of sugars in grapevine, an integrated indicator of vineyard water status. Journal of Experimental Botany. 2002. Vol. 53, No. 369. P. 757-763.
43. The influence of water stress on plant hydraulics, gas exchange, berry composition and quality of Pinot Noir wines in Switzerland / V. Zufferey et al. OENO One. 2017. Vol. 51, No. 1. P. 37-57. DOI: 10.20870/oeno-one.2017.51.1.1314
44. Cooley N., Clingeleffer P., Walker R. Effect of water deficits and season on berry development and composition of Cabernet Sauvignon (Vitis vinifera L.) grown in a hot climate. Australian Journal of Grape and Wine Research. 2017. Vol. 23, No. 2. P. 260-272. DOI: 10.1111/ajgw.12274
45. Effect of deficit irrigation on vine performance and grape composition of Vitis vinifera L. cv. Muscat of Alexandria / I. Buesa et al.. Australian Journal of Grape and Wine Research. 2017. Vol. 23. No. 2. P. 251-259. DOI: 10.1111/ajgw.12280
46. Munitz S., Netzer Y., Schwartz A. Sustained and regulated deficit irrigation of field-grown Merlot grapevines. Australian Journal of Grape and Wine Research. 2017. Vol. 23, No. 1. P. 87-94. DOI: 10.1111/ajgw.12241
47. The impact of plant water status on the gas exchange, berry composition and wine quality of Chasselas grapes in Switzerland: Impacts of water stress on grapevine physiology / V. Zufferey et al. OENO One. 2018. Vol. 52. No. 4. P. 347-361. DOI: 10.20870/oeno-one.2018.52.4.2181
48. From grape berries to wines: drought impacts on key secondary metabolites / S. Savoi et al. OENO One. 2020. Vol. 54, No. 3. P. 569-582. DOI: 10.20870/oeno-one.2020.54.3.3093
49. The effects of drought and supplemental UV-B radiation on physiological and biochemical traits of the grapevine cultivar “Soultanina” / Doupis G., Chartzoulakis K., Taskos D., Patakas A. OENO One. 2020. Vol. 54, No. 4. P. 687-698. DOI: 10.20870/oeno-one.2020.54.4.3581
50. Exogenous application of abscisic acid to root systems of grapevines with or without salinity influences water relations and ion allocation / Degaris K., Walker R., Loveys B., Tyerman S. Australian Journal of Grape and Wine Research. 2017. Vol. 23, No. 1. P. 66-76. DOI: 10.1111/ajgw.12264
51. Differential response of the accumulation of primary and secondary metabolites to leaf-to-fruit ratio and exogenous abscisic acid / L. Wang et al.. Australian Journal of Grape and Wine Research. 2021. Vol. 27, No. 4. P. 527-539. DOI: 10.1111/ajgw.12509
52. Effects of deficit irrigation on the performance of grapevine (Vitis vinifera L.) cv. ‘Godello’ and ‘Treixadura’ in Ribeiro, NW Spain / Trigo-Córdoba E., Bouzas-Cid Y., Orriols-Fernández I., Mirás-Avalosa J.M. Agricultural Water Management. 2015. Vol. 161. P. 20-30. DOI: 10.1016/j.agwat.2015.07.011
53. Каменева Н. Фізіологічні та біохімічні основи підвищення врожаю і якості винограду: монографія. Харків, 2021. 193 с.
54. Manipulation of ripening via antitranspirants in cv. Barbera (Vitis vinifera L.) / M. Gatti et al. Australian Journal of Grape and Wine Research. 2016. Vol. 22, No. 2. P. 245-255. DOI: 10.1111/ajgw.12212
55. Effect of water stress and elevated temperature on hypoxia and cell death in the mesocarp of Shiraz berries / Z. Xiao et al. Australian Journal of Grape and Wine Research. 2018. Vol. 24, No. 4. P. 487-497. DOI: 10.1111/ajgw.12363
56. Interactive effects of high temperature and water deficit on Malbec grapevines / Galat Giorgi E., Sadras V. O., Keller M., Perez Peña J. Australian Journal of Grape and Wine Research. 2019. Vol. 25, No. 3. P. 345-356. DOI: 10.1111/ajgw.12398
57. Carbonneau A., Costanza P. Response of vine leaf water potential to quick variation in canopy exposure. Example of canopy opening manipulation of Merlot (Vitis vinifera L.). OENO One. 2004. Vol. 38, No. 1. P. 27-33. DOI: 10.20870/oeno-one.2004.38.1.929
58. Grapevine canopy response to a high-temperature event during deficit irrigation / Edwards E., Smithson L., Graham D., Clingeleffer P. Australian Journal of Grape and Wine Research. 2011. Vol. 17, No. 2. P. 153-161. DOI: 10.1111/j.1755-0238.2011.00125.x
59. Effects of the irrigation regimes on grapevine cv. Bobal in a Mediterranean climate: I. Water relations, vine performance and grape composition / E.P. Pérez-Álvareza et al. Agricultural Water Management. 2021. Vol. 248. DOI: 10.1016/j.agwat.2021.106772
60. Рекомендации по орошению виноградников на юге УССР / Лянной А.Д., Поляков В.И., Захарченко В.А., Шевченко И.В. Одесса, 1984. 39 с.
61. Schultz H. Issues to be considered for strategic adaptation to climate evolution – is atmospheric evaporative demand changing? OENO One. 2017. Vol. 51, No. 2. P. 107-114. DOI: 10.20870/oeno-one.2017.51.2.1619
62. Irrigation effects on the performance of grapevine (Vitis vinifera L.) cv. ‘Albariño’ under the humid climate of Galicia / Mirás-Avalos J. M., Trigo-Córdoba E., Bouzas-Cid Y., Orriols-Fernández I. OENO One. 2016. Vol. 50, No. 4. P. 183-194. DOI: 10.20870/oeno-one.2016.50.4.63
63. Historical and future trends in evapotranspiration components and irrigation requirement of winegrapes / Phogat V. et al. Australian Journal of Grape and Wine Research. 2020. Vol. 26, No. 4. P. 312-324. DOI: 10.1111/ajgw.12446
64. Improving water use efficiency of vineyards in semi-arid regions / H. Medrano et al. A review. Agron. Sustain. Dev. 2015. Vol. 35. P. 499-517. DOI: 10.1007/s13593-014-0280-z
65. Режимна територія / А.В. Штірбу, О.В. Олефір, Н.О. Сівак, В.О. Паларієв. Садівництво по українські. 2021. Т. 50, №. 3. С. 68-71.
66. Swan F. 3 Myths About Irrigation and Dry Farming. 2017. URL: https://daily.sevenfifty.com/3-myths-about-irrigation-and-dry-farming/ (дата звернення: 17.06.2024)
67. Юсупов Ю., Икрамова М., Каландаров Р. Агроэкологическое обоснование потенциальных урожаев винограда в богарных условиях Таджикистана. Перспективы развития производства и переработки винограда. 1987. С. 143-146.
68. Зрошення виноградників / О.Д. Ляний та ін. Київ, 1994. 25 с.
69. Амирджанов А.Г. Солнечная радиация и продуктивность виноградника. Ленинград, 1980. 208 с.
70. Амирджанов А.Г. Методы оценки продуктивности виноградников с основами программирования урожая. Кишинев, 1992. 176 с.
71. English M. Deficit Irrigation. I: Analytical Framework. Journal of Irrigation and Drainage Engineering. 1990. Vol. 116, No. 3. P. 399-412. DOI: 10.1061/(ASCE)0733-9437(1990)116:3(399)
72. Fereres E., Soriano M.A. Deficit irrigation for reducing agricultural water use. Journal of Experimental Botany. 2007. Vol. 58, No. 2. P. 147-159. DOI: 10.1093/jxb/erl165
73. Zhang H., Oweis T. Water-yield relations and optimal irrigation scheduling of wheat in the Mediterranean region. Agricultural Water Management. 1999. Vol. 38, No. 3. P. 195-211. DOI: 10.1016/S0378-3774(98)00069-9.
74. AquaCrop - The FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles / Steduto P, Hsiao T.C., Raes D., Fereres E. Agronomy Journal. 2009. Vol. 101, No. 3. P. 426-437. DOI: 10.2134/agronj2008.0139s
75. Steduto P., Albrizio R. Resource use efficiency of field-grown sunflower, sorghum, wheat and chickpea. II. Water use efficiency and comparison with radiation use efficiency. Agricultural and Forest Meteorology. 2005. Vol. 130, No. 3–4. P. 269-281. DOI: 10.1016/j.agrformet.2005.04.003
76. Effects of Irrigation at Different Fractions of Crop Evapotranspiration on Water Productivity and Flavonoid Composition of Cabernet Sauvignon Grapevine / N. Torres et al. Front. Plant Sci. 2021. Vol. 12. DOI: 10.3389/fpls.2021.712622
77. Proper deficit irrigation applied at various stages of growth can maintain yield and improve the comprehensive fruit quality and economic return of table grapes grown in greenhouses / X. Jiang et al. Irrigation and Drainage. 2021. Vol. 5. P. 1056–1072.
78. Postveraison Deficit Irrigation Effects on Fruit Quality and Yield of “Flame Seedless” Table Grape Cultivated under Greenhouse and Net / P.Virginia et al. Plants. 2020. Vol. 9, No. 11. P. 14-37.
79. Дворнин А.В. Орошение виноградников. Агроуказания по виноградарству. Кишинев, 1989. C. 292-297.
80. The soil component of terroir / White R., Balachandra L., Edis R., Chen D. Journal of Vine and Wine Sciences. 2007. Vol. 41. P. 9-18. DOI: 10.20870/oeno-one.2007.41.1.860
81. Soil water availability during spring modulates canopy growth and impacts the chemical and sensory composition of Shiraz fruit and wine / Bonada M., Catania A., Gambetta J., Petrie P. Australian Journal of Grape and Wine Research. 2021. Vol. 27, No. 4. P. 491-507. DOI: 10.1111/ajgw.12506
82. Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes? / C. Leeuwen et al. OENO One. 2009. Vol. 43, No. 3. P. 121-134. DOI: 10.20870/oeno-one.2009.43.3.798
83. Influence of water regime on yield components, must composition and wine volatile compounds of Vitis vinifera cv. Verdejo / Vilanova M., Rodríguez-Nogales J., Vila-Crespo J., Yuste J. Australian Journal of Grape and Wine Research. 2019. Vol. 25, No. 1. P. 83-91. DOI: 10.1111/ajgw.12370
84. The influence of vine water regime on the leaf gas exchange, berry composition and wine quality of Arvine grapes in Switzerland / V. Zufferey et al. OENO One. 2020. Vol. 54, No. 3. P. 553-568. DOI: 10.20870/oeno-one.2020.54.3.3106
85. Water stress and bunch thinning on Tempranillo wine / E. Gamero et al. Australian Journal of Grape and Wine Research. 2014. Vol. 20. P 394-400. DOI: 10.1111/ajgw.12088
86. Irrigation and crop load effects on carbohydrates / Dayer S., Prieto J.A., Galat E., Perez Peña J. Australian Journal of Grape and Wine Research. 2013. Vol. 19. P. 422-430. DOI: 10.1111/ajgw.12044
87. Edwards E., Clingeleffer P. Interseasonal effects of regulated deficit irrigation on growth, yield, water use, berry composition and wine attributes of Cabernet Sauvignon grapevines. Australian Journal of Grape and Wine Research. 2013. Vol. 19, No. 2. P. 261-276. DOI: 10.1111/ajgw.12027
88. Researches concerning the influences of climate changes on grapevine / Bucur G., Dejeu L., Cazan G., Tănase A. Scientific Papers. Series B. Horticulture. 2012. Vol. LVI. P. 43-48.
89. Ляшенко Г.В., Жигайло Т.С. Моделирование влияния изменения климата на продуктивность технических сортов винограда в Северном Причерноморье. Український гідрометеорологічний журнал. 2014. Т. 14. С. 112-122.
90. Leeuwen C., Seguin G. The concept of terroir in viticulture. Journal of Wine Research. 2006. Vol. 17, No. 1. P. 1-10. DOI:10.1080/09571260600633135
91. Blank M., Hofmann M., Stoll M. Seasonal differences in Vitis vinifera L. cv. Pinot noir fruit and wine quality in relation to climate. OENO One. 2019. Vol. 53, No. 2. P. 189-203. DOI: 10.20870/oeno-one.2019.53.2.2427
92. Alba V., Gentilesco G., Tarricone L. Climate change in a typical Apulian region for table grape production: spatialisation of bioclimatic indices, classification and Future Scenarios. OENO One. 2021, Vol. 55, No. 3. P. 317-336. DOI: 10.20870/oeno-one.2021.55.3.4733
93. Wang X., Wang H., Li H. The influence of recent climate variability on viticultural zoning and variety regionalization of Vitis vinifera in China. OENO One. 2020. Vol. 54, No. 3. P. 523-541. DOI: 10.20870/oeno-one.2020.54.3.2971
94. Impact of recent climate change and weather variability on the viability of UK viticulture – combining weather and climate records with producers' perspectives / A. Nesbitt et al. Australian Journal of Grape and Wine Research. 2016. Vol. 22, No. 2. P. 324-335. DOI: 10.1111/ajgw.12215
95. Caffarra A., Eccel E. Projecting the impacts of climate change on the phenology of grapevine in a mountain area. Australian Journal of Grape and Wine Research. 2011. Vol. 17, No. 1. P. 52-61. DOI: 10.1111/j.1755-0238.2010.00118.x
96. Evaluation of the viticultural potential from the pietroasa wine-growing region in the context of current climatic changes / Donici A., Mari S., Banita C., Urmuzache R. Scientific Papers. Series B, Horticulture. 2021. Vol. LXV, No. 2. P. 105-108.
97. Londo J.P., Martinson T.E. Grapevine Winter Survival and Prospects in an Age of Changing Climate. Appellation Cornell. 2016. URL: https://hdl.handle.net/1813/103657 (дата звернення: 12.05.2024)
98. Штірбу А.В. Зимова обрізка виноградного куща на плодоношення. Садівництво і виноградарство. Технології і інновації. 2021. № 1. С. 78-82.
99. Mitigating grapevine winter damage in cold climate areas / Rahemi A., Fisher H., Carter K., Taghavi T. Hort. Sci. 2022. Vol. 49. P. 59-70. DOI: 10.17221/176/2020-HORTSCI
100. Обобщенная экологическая оценка земель под виноградники / А.Я. Земшман и др. Почва, климат, виноград. Кишинев, 2000. С. 154-200.
101. Lisek J. Winter frost injury of buds on one-year-old grapevine shoots of Vitis vinifera cultivars and interspecific hybrids in Poland. Folia Horticulturae. 2012. Vol. 24, No. 1. P. 97-103. DOI: 10.2478/v10245-012-0010-4
102. Cold-Hardy Grape Cultivar Winter Injury and Trunk Re-Establishment Following Severe Weather Events in North Dakota / S. Andrej et al. Horticulturae. 2020. Vol. 6, No. 75. DOI: 10.3390/horticulturae6040075
103. Mechanical Winter Injury in Grapevine Trunks / J.H. Paroschy et al. Am J Enol Vitic. 1980. Vol. 31. P. 227-232. DOI: 10.5344/ajev.1980.31.3.227
104. Winter Injury to Grapevine Secondary Phloem and Cambium Impairs Budbreak, Cambium Activity, and Yield Formation / Gonzalez Antivilo et al. J Plant Growth Regul. 2020. Vol. 39. P. 1095–1106. DOI: 10.1007/s00344-019-10051-w
105. Grapevine trunk diseases of cold-hardy varieties grown in Northern Midwest vineyards coincide with canker fungi and winter injury / DeKrey D.H., Klodd A.E., Clark M.D., Blanchette R.A. PLoS ONE. 2022. Vol. 17, No. 6. DOI: 10.1371/journal.pone.0269555
106. Слюсаренко О.М., Шматковська К.А. Поширення хвороб деревини винограду й удосконалення заходів з обмеження їх шкодочинності в умовах Північного Причорномор’я. Вісник аграрної науки. 2019. Т. 790, № 1. DOI: 10.31073/agrovisnyk201901-03
107. Перстнёв Н.Д. Виноградарство. Кишинёв, 2001. 603 с.
108. Штірбу А., Олефір О., Сівак Н. Зазирнути у вічка. Садівництво по-українськи. 2022. № 2, 3. С. 58-59.
109. Пособие для производителей столового винограда / Николаеску Г., Апруда П., Перстнев Н., Терещенко А. Кишинев, 2008. 142 с.
110. Власов В.В. Экологические основы формирования виноградных ландшафтов. Арциз, 2013. 248 с.
111. Gribcova A. Argumentarea tehnologica a parametrilor ecologici pentru amplasarea vitei de vie in regiunea Centru a Republicii Moldova : autoref. … PhD : 411.07. Chisinau, 2023. 33 p.
112. Bucur G., Dejeu L. Research on Frost Injury of New Romanian Grapevine Cultivars in the Winter 2014-2015. Agriculture and Agricultural Science Procedia. 2016. Vol. 10. P. 233-237. DOI: 10.1016/j.aaspro.2016.09.057
113. Winter injury to grapevines and methods of protection / T.J. Zabadal et al. Michigan State University Extension, 2007. 93 p. URL: https://www.traubenshow.de (дата звернення: 17.08.2024)
114. Willwerth J., Ker K., Inglis D. Best Management Practices for Reducing Winter Injury in Grapevines. Brock University, 2014. 81 p. URL: https://brocku.ca/webfm_send/33923 (дата звернення: 17.08.2024)
115. Tóth J., Végvári Z. Future of winegrape growing regions in Europe. Australian Journal of Grape and Wine Research. 2016. Vol. 22, No 1. P. 64-72. DOI: 10.1111/ajgw.12168
116. Adapting plant material to face water stress in vineyards: which physiological targets for an optimal control of plant water status? / T. Simonneau et al. OENO One. 2017. Vol. 51, No. 2. P. 167-179. DOI: 10.20870/oeno-one.2017.51.2.1870
117. Growth and physiology of four Vitis vinifera L. cv. Tempranillo clones under future warming and water deficit regimes / M. Arrizabalaga-Arriazu et al. Australian Journal of Grape and Wine Research. 2021. Vol. 27, No. 3. P. 295-307, DOI: 10.1111/ajgw.12494
118. Prieto J., Lebon É., Ojeda H. Stomatal behavior of different grapevine cultivars in response to soil water status and air water vapor pressure deficit. OENO One. 2010. Vol. 44, No. 1. P. 9-20. DOI: 10.20870/oeno-one.2010.44.1.1459
119. The challenge of adapting grapevine varieties to climate change / E. Duchêne et al. Clim. Res. 2010. Vol. 41. P. 193-204.
120. Moscato Cerletti, a rediscovered aromatic cultivar with oenological potential in warm and dry areas / A. Sparacio et al. OENO One. 2021. Vol. 55, No. 3. P. 123-140. DOI: 10.20870/oeno-one.2021.55.3.4605
121. Meeting the demands of climate change: Australian consumer acceptance and sensory profiling of red wines produced from non-traditional red grape varieties / L. Mezei et al. OENO One. 2021. Vol. 55, No. 2. P. 29-46. DOI: 10.20870/oeno-one.2021.55.2.4571
122. Adaptation to climate change by determining grapevine cultivar differences using temperature-based phenology models / A. Parker et al. OENO One. 2020. Vol. 54, No. 4. P. 955-974. DOI: 10.20870/oeno-one.2020.54.4.3861
123. Adaptive capacity of winegrape varieties cultivated in Greece to climate change: current trends and future projections / Koufos G., Mavromatis T., Koundouras S., Jones G. OENO One. 2020. Vol. 54, No. 4. P. 1201-1219. DOI: 10.20870/oeno-one.2020.54.4.3129
124. Response of ungrafted and grafted grapevine cultivans and rootstocks (Vitis sp.) to water stress / I. Toumi et al. OENO One. 2007. Vol. 41, No. 2. P. 85-94. DOI: 10.20870/oeno-one.2007.41.2.853
125. Challenges of viticulture adaptation to global change: tackling the issue from the roots / D. Marín et al. Australian Journal of Grape and Wine Research. 2021. Vol. 27, No. 1. P. 8-25. DOI: 10.1111/ajgw.12463
126. Review: the interaction between rootstocks and cultivars (Vitis vinifera L.) to enhance drought tolerance in grapevine / Serra I., Strever A., Myburgh P., Deloire A. Australian Journal of Grape and Wine Research. 2014. Vol. 20, No. 1. P. 1-14. DOI: 10.1111/ajgw.12054
127. Effect of water stress and rootstock genotype on Pinot Noir berry composition / M. Berdeja et al. Australian Journal of Grape and Wine Research. 2014. Vol. 20, No. 3. P. 409-421. DOI: 10.1111/ajgw.12091
128. Ezzahouani A., Williams L. Performance of dattier de Beyrouth and Alphonse Lavallée grapevines on eight rootstocks under dry-land conditions. OENO One. 2005. Vol. 39, No. 2. P. 91-94. DOI: 10.20870/oeno-one.2005.39.2.898
129. Sustainable Viticulture: Effects of Soil Management in Vitis vinifera / E. Cataldo et al. Agronomy. 2020. Vol. 10, No. 12. DOI: 10.3390/agronomy10121949
130. Reflective materials and management practices on the physicochemical and biochemical quality of Merlot grapes / A. Porto et al. Advances in Horticultural Science. 2018. Vol. 33, No. 1. P. 39-48. DOI: 10.13128/ahs-23606
131. Șerdinescu A., Pîrcălabu L., Fotescu L. Influence of soil maintenance systems and fruit load on grapes quality under drought conditions. Scientific Papers. Series B, Horticulture. 2014. Vol. LVIII. P. 201-204.
132. Composition of Sauvignon blanc Grapes as Affected by Pre-veraison Canopy Manipulation and Ripeness Level / Hunter J., Volschenk C., Marais J., Fouche G. South African Journal of Enology and Viticulture. 2004. Vol. 25, No. 1. P. 13-18. DOI: 10.21548/25-1-2132
133. Influence of Canopy Management Practices on Canopy Architecture and Reproductive Performance of Semillon and Shiraz Grapevines in a Hot Climate / Wang X., De Bei R., Fuentes S., Collins C. American Journal of Enology and Viticulture. 2019. Vol. 70, No. 4. P. 360-372. DOI: 10.5344/ajev.2019.19007
134. Bucur G. Research on some methods of canopy management to mitigate the effects of climate warming at grapevine. Scientific Papers. Series B, Horticulture. 2021. Vol. LXV, No. 1. P. 305-310.
135. Shading of the fruit zone to reduce grape yield and quality losses caused by sunburn / M. Oliveira et al. OENO One. 2014. Vol. 48, No. 3. P. 179-187. DOI: 10.20870/oeno-one.2014.48.3.1579
136. Effects of sunlight exclusion on leaf gas exchange, berry composition, and wine flavour profile of Cabernet-Sauvignon from the foot of the north side of Mount Tianshan and a semi-arid continental climate / H. Lu et al. OENO One. 2021. Vol. 55, No. 2. P. 267-283. DOI: 10.20870/oeno-one.2021.55.2.4545
137. Власов В.В. Екологія винограду Північного Причорномор’я: моногр. Одеса, 2009. 157 с.
138. Reduced density is an environmental friendly and cost effective solution to increase resilience to drought in vineyards in a context of climate change / C. Leeuwen et al. OENO One. 2019. Vol. 53, No. 2. P. 129-146. DOI: 10.20870/oeno-one.2019.53.2.2420
139. Gutiérrez-Gamboa G., Zheng W., Toda F.M. Strategies in vineyard establishment to face global warming in viticulture: a mini review. Journal of the Science of Food and Agriculture. 2020. Vol. 101, No. 4. Р. 1261-1269. DOI: 10.1002/jsfa.10813
140. Salvi L., Cataldo E., Mattii G.B. Grapevine quality characteristics as affected by the training system. Acta Hortic. 2017. Vol. 1188. Р. 113-120. DOI: 10.17660/ActaHortic.2017.1188.15
141. Influence of trellis system and shoot positioning on light interception and distribution in two grapevine cultivars with different architectures: an original approach based on 3D canopy modelling / G. Louarn et al. Australian Journal of Grape and Wine Research. 2008. Vol. 14, No. 3. Р. 143-152. DOI: 10.1111/j.1755-0238.2008.00016.x
142. Principles of vineyard establishment and strategies to delay ripening under a warming climate / T. Morales-Henríquez et al. IVES Technical revievs. 2022. P. 1-2. DOI: 10.20870/IVES-TR.2022.5580
143. Deloire A., Rogiers S., Trujillo P.B. What could be the architectural forms of future vines adapted to climate change: a new challenge! Let’s discuss the Gobelet (Bush Vine). IVES Technical revievs. 2022. P. 1-2. DOI: 10.20870/IVES-TR.2022.5384
144. Shtirbu A., Olefir O., Sivak N. Agrobiological Responses of Grapevines to Different Training Systems in Semiarid Environments. Mitteilungen Klosterneuburg. 2023. Vol. 73. P. 114-125. URL: https://www.cabidigitallibrary.org/doi/pdf/10.5555/20230343276 (дата звернення: 11.05.2024)
145. Shtirbu A., Кovalova І., Vlasov V. Responses of Grapevines to Planting Density and Training Systems in Semiarid Environments. Agricultural Science and Practice. 2022.Vol. 9, No. 2. P. 38-50. DOI: 10.15407/agrisp9.02.038
146. Leeuwen C., Roby J., Ollat N. Viticulture in a changing climate: solutions exist. IVES Technical reviews. 2019. DOI:10.20870/IVES-TR.2019.2530.
147. Reduced density is an environmental friendly and cost effective solution to increase resilience to drought in vineyards in a context of climate change / C. Leeuwen et al. OENO One. 2019. Vol. 53, No. 2. P. 129-146. DOI: 10.20870/oeno-one.2019.53.2.2420
148. General Viticulture / Winkler A.J., Cook J.A., Kliewer W.M., Lider L.A. University of California Press, 1974. 710 p.
149. Keller M., Mills L.J. High Planting Density Reduces Productivity and Quality of Mechanized Concord Juice Grapes. Am. J. Enol. Vitic. 2021. Vol. 72. Р. 358-370. DOI: 10.5344/ajev.2021.21014
150. Стоев К.Д. Физиология винограда и основы его возделывания. Т. 3. София, 1984. 328.
151. Badr G., Hoffman J., Bates T. Effect of Cane Length on Concord and Niagara Grapevines. American Journal of Enology and Viticulture. 2018. Vol. 69, No. 4. P. 386-393. DOI: 10.5344/ajev.2018.18019
152. Parker A. Manipulating the leaf area to fruit mass ratio alters the synchrony of total soluble solids accumulation and titratable acidity of grape berries. Australian Journal of Grape and Wine Research. 2015. Vol. 21, No. 2. P. 266-276. DOI: 10.1111/ajgw.12132
153. Reynolds A., Wardle D., Dever M. Shoot Density Effects on Riesling Grapevines: Interactions with Cordon Age. American Journal of Enology and Viticulture. 1994. Vol. 45, No. 4. P. 435-443.
154. Reduced density is an environmental friendly and cost effective solution to increase resilience to drought in vineyards in a context of climate change / C. Leeuwen et al. OENO One. 2019. Vol. 53, No. 2. P. 129-146. DOI: 10.20870/oeno-one.2019.53.2.2420