INFLUENCE OF RASPBERRY BUSHY DWARF VIRUS ON THE DROUGHT RESISTANCE OF RASPBERRY PLANTS

DOI: 10.35205/0558-1125-2024-79-139-144
UDC 634.71:578:632.3

INFLUENCE OF RASPBERRY BUSHY DWARF VIRUS ON THE DROUGHT RESISTANCE OF RASPBERRY (RUBUS IDAEUS L.) PLANTS


I.A. RIABA, Junior Research Worker
K.M. UDOVYCHENKO, PhD
Institute of Horticulture, NAAS of Ukraine, 03027, Kyiv-27, 23, Sadova st.,
e-mail: opanasencko.irina@ukr.net  

Plants are often exposed to a combination of abiotic and biotic stresses, such as drought and viral infections, which can significantly influence their physiological processes. While the impact of viruses on plant resistance to abiotic stresses remains controversial, with reports of both enhancing and diminishing effects, the underlying mechanisms of drought tolerance, especially in raspberry plants, require further investigation. This study aimed to evaluate the water-holding capacity and water deficit in virus-free and Raspberry bushy dwarf virus (RBDV)-infected plants of three primocane raspberry cultivars: ‘Joan J’, ‘Brusvjana’, and ‘Sugana’. The water-holding capacity of leaves significantly differed between healthy and RBDV-infected plants. After 24 hours of exposure, the average water loss was 41.85% for virus-free plants and 54.74% for infected plants. Compared to their healthy counterparts, water loss was higher in infected plants by 27.8%, 29.8%, and 35.6% for the cultivars ‘Brusvjana’, ‘Sugana’, and ‘Joan J’, respectively. Additionally, the water deficit increased by 66% in infected plants of ‘Brusvjana’ and ‘Sugana’, while in ‘Joan J,’ it rose by 81%, highlighting this cultivar's lower adaptive potential to drought conditions. These findings suggest that RBDV infection aggravates drought-related stress in raspberry plants, disrupting water retention mechanisms and increasing water deficit. Such effects may be associated with structural and metabolic changes in the cell wall, impairing its protective functions. These results emphasize the need for further research into virus-induced alterations in drought responses, particularly under the context of climate change, where drought remains a critical factor limiting crop productivity.
Кеy words: viral infection, water deficit, water-holding capacity, stress, R. іdaeus

Список використаної літератури
1.Укрстат. Площі, валові збори та урожайність сільськогосподарських культур за їх видами по областях. 2022. URL: https://www.ukrstat.gov.ua/operativ/operativ2022/sg/pvzu/archpvxureg.htm (дата звернення: 15.06.2024).
2.Diaz I. Plant defense genes against biotic stresses. International Journal of Molecular Sciences. 2018. Vol. 19(8). P. 2446. DOI: 10.3390/ ijms19082446
3.Rontein D., Basset G., Hanson A. D. Metabolic engineering of osmoprotectant accumulation in plants. Metabolic engineering. 2002. Vol. 4(1). P. 49-56. DOI: 10.1006/mben.2001.0208  
4.Simeone A.M., Cappelini P., Yuanhu Z. Physiological modification caused by PPV in the leaves of peach and apricot tree. Phytopathol. Mediterr. 2000. Vol. 39(3). P. 447-450. DOI: DOI: 10.14601/Phytopathol_Mediterr-1584
5.Virus infection improves drought tolerance / P. Xu et al. New Phytol. 2008. Vol. 180(4). P. 911-921. DOI: 10.1111/j.1469-8137.2008.02627.x
6.Plant virus evolution under strong drought conditions results in a transition from parasitism to mutualism /  R. González et al. Proc. Natl. Acad. Sci. U.S.A. 2021. 118(6). e2020990118. DOI: 10.1073/pnas.2020990118
7.Water relations, histopathology and growth of common bean (Phaseolus vulgaris L.) during pathogenesis of Macrophomina phaseolina under drought stress / N. Mayek-Pérez et al. Physiological and Molecular Plant Pathology. 2002. Vol. 60(4). P. 185-195. DOI: 10.1006/pmpp.2001.0388
8.Prasch C. M., Sonnewald U. Simultaneous application of heat, drought, and virus to arabidopsis plants reveals significant shifts in signaling networks. Plant Physiology. 2013. Vol. 162(4). P. 1849-1866. DOI: 10.1104/pp.113.221044
9.Jiménez J., Sadras V. O., Espaillat N.  Interplay between drought and plant viruses co-infecting melon plants. Scientific Reports. 2024. Vol. 14. 15833. DOI: 10.1038/s41598-024-66344-y
10.Water deficit enhances the transmission of plant viruses by insect vectors /  М. Munster et al. PLoS ONE. 2017. Vol. 12(5).  DOI: 10.1371/journal.pone.0174398
11.Віруси, що домінують в насадженнях кущових ягідних культур /  Н.В. Тряпіцина та ін. Садівництво. 2013. № 67. С. 193-203.
12.Stahler M. M., Lawrence F. J., Martin R. R. Incidence of Raspberry bushy dwarf virus in breeding plots of red raspberry. Hort Science. 1995. Vol. 30(1). P. 113-114. DOI: 10.21273/hortsci.30.1.113
13.Кондратенко П. В., Бублик О. М. Методика проведення польових досліджень з плодовими культурами. Київ: Аграрна наука. 1996. 96 с.
14.Wollenweber B., Porter J. R., Lubberstedt T. Need for multidisciplinary research towards a second green revolution. Current Opinion in Plant Biology. 2005. Vol. 8. P. 337-341. DOI: 10.1016/j.pbi.2005.03.001
15.Matić S., Moine A., Chitarra W., Nerva L., D’Errico C., Pagliarani C., & Noris E. Tomato yellow leaf curl Sardinia virus increases drought tolerance of tomato /  C. Sacco Botto et al. International Journal of Molecular Sciences. 2023. Vol. 24(3). P. 2893. DOI: 10.3390/ijms24032893