
AGROBIOLOGICAL AND PHYSIOLOGICAL ASPECTS IN THE EVALUATION OF IMMUNE APPLE VARIETIES TO SCAB
DOI: 10.35205/0558-1125-2025-80-19-29
UDC 581.1:631.526.32:634.11
AGROBIOLOGICAL AND PHYSIOLOGICAL ASPECTS IN THE EVALUATION OF IMMUNE APPLE (MALUS DOMESTICA BORKH.) VARIETIES TO SCAB
V.M. ZHUK, PhD
V.V. ZHUK, Postgraduate Student
Institute of Horticulture (IH), NAAS of Ukraine, 03027, Kyiv-27, Sadova St., 23,
e-mail: cherry0308@ukr.net
The problem of growing apple fruits in intensive plantings is considered. The expediency of using scab-resistant varieties to reduce the negative technogenic impact on the environment is substantiated. The productivity and its impact on physical parameters, chlorophyll concentration, water-holding capacity of leaves, and fruiting frequency of the Florina, Skifske Zoloto, and Dmiana varieties in orchard structures on M9 rootstock with a tree planting density of 4 x 1 and 4 x 0.5 m are investigated. It was found that in intensive apple plantations, the level of specific leaf productivity determines its physical parameters, green pigment concentration, water retention capacity, and the level of fruiting frequency of scab-immune varieties. During the period of full fruiting (in the seventh and eighth years after planting), the specific leaf productivity index depended on the leaf area and fruit yield per tree. In different designs of the Florina orchard, it ranged from 0.67 to 1.25, and in Skifskoe Zoloto and Dmiana, it ranged from 1.2 to 2.85 and 0.97 to 3.5 kg/m2, which is 1.8 to 2.3 and 1.4 to 2.8 times higher, respectively. It has been found that with high specific leaf productivity, the physical parameters of individual leaves change in the direction of an increase in their specific surface density from 8.2 to 11.1 mg/cm2. At the same time, the average leaf area and chlorophyll concentration in them decreased by 10.0-25.9 and 2.0-8.7 %, while water retention capacity increased. The above trend was most pronounced in high-density plantings of Dmiana, which indicates the high adaptive ability of this variety to maintain a significant fruit yield in more productive years and a tendency toward pronounced periodicity of fruiting. At the same time, the Dmiana variety provided an average yield of 29.6-41.8 t/ha in the first seven years of fruiting, which is 8.8-23.3 and 45.0-62.6 % more than the Skifske Zoloto and Florina varieties. Therefore, effective measures need to be developed for production conditions that would ensure a reduction in the periodicity of fruiting of this variety in intensive plantings.
Key words: apple tree, varieties, intensive technologies, yield, leaf area, specific productivity, specific surface density, chlorophyll concentration, water retention capacity, fruiting frequency.
Список використаної літератури
1. Макош Э. Польское садоводство с экономической точки зрения. Люблин: Prognosfruit, 2004. 71 с.
2. Hricovsky I. Development of fruit planting in the Slovak republic after its accession to the European union. Acta Horticulturаe: International Conference of Perspectives in European Fruit Growing, Lednice, Czech Republic, October 18-20, 2006. P. 13-15.
3. Мельник О.В. Тенденції виробництва яблук у Європі і світі. Новини садівництва. 2014. № 3. С.19-29.
4. Rubauskis E., Borisova I. Evaluation of dwarf rootstocks for high-density and sustainable orchards in Latvia. Acta Horticulturаe. 2022. 1346. P. 691-698. DOI:10.17660ActaHortic.2022.1346.87
5. Омельченко І.К., Жук В.М. Сучасні типи інтенсивних насаджень яблуні в Україні. Садівництво. 2005. № 57. С. 243-252.
6. Барабаш Л.О., Мухарський А.О., Фризюк Л.А., Чорна Г.А. Стан та основні тенденції виробництва яблук в Україні. Основи адаптивних технологій вирощування яблуні в Україні: монографія; за ред. І.В.Гриника. Київ. 2020. С. 5-14.
7. Кондратенко П.В. Кондратенко Т.Є. Еволюція технології вирощування яблуні. Садівництво. 2018. Вип.73. С. 66-74.
8. Apple farming systems – current initiatives and some prospective views on how to improve sustainability / Lauri P., Pitchers B., Dufour L., Simon S. Acta Horticulturаe. 2020. 1281. P. 307-322. DOI: 10.17660/ActaHortic.2020.1281.42
9. Sansavini S., Donati F. Advances in apple breeding for enhanced fruit quality and resistance to biotic stresses: new varieties for European market. Journal of Fruit and Ornamental Plant Research (Special ed.). 2004. Vol. 12. P. 13-52.
10. Bravin E., Perren S., Naef A. Low residue apple production: higher production risk and lower profit. Acta Horticulturаe. 2019. 1242. P. 217-222. DOI: 10.17660/ActaHortic.2019.1242.30
11. Кондратенко П.В., Бублик М.О. Методика проведення польових досліджень з плодовими культурами. Київ: Аграрна наука, 1996. 95 с.
12. Починок Х.М. Методы биохимического анализа растений /Х.М. Починок. К.: Наукова думка, 1976. С. 192-218.
13. Программа и методика сортоизучения плодовых, ягодных и орехоплодных культур / под ред. Е.Н. Седова, Т.П. Огольцовой. Орел: Изд-во ВНИИСПК, 1999. 608 с.
14. Heinicke A. J., Hoffman M. B. An apparatus for determining the absorption of carbon dioxide by leaves under natural conditions. Science. 1933. Т. 77 (1985). С. 55-58.
15. Винцковская Ю.Ю., Китаєв О.И. Влияние антитранспиранта вапор гард на содержание пигментов и функциональное состояние листового аппарата яблони (Malus domestica Borkh.). Ştiinţa agricolă. 2017. № 1. С. 39-43.
16. Кудрявец Р.П. Продуктивность яблони. Москва: Агропромиздат, 1987. 303 с.
17. Шишкану Г.В., Титов Н.В. Фотосинтез плодовых растений. Кишинев: Штиинца, 1995. 235 с.
18. Даффус К., Даффус Дж. Углеводный обмен растений; пер. с анг. Москва: Агропромиздат, 1987. 176 с.
19. Цельникер Ю.Л. Влияние интенсивности света на число и размеры хлоропластов у древесных пород. Физиология растений. 1975. Т. 22, № 2. С. 262-269.
20. Горишина Т.К. Фотосинтетический аппарат растений и условия среды. Л.: Изд-во Ленинградского ун-та, 1989. 203 с.
21. Соловьева М.А., Оканенко Н.С., Починок Х.Н. Физиология древесных растений. М.: Изд-во АН СССР, 1962. 268 с.
22. Кушниренко М.Д. Водный обмен яблони. Кишинев: АН МССР, 1970. 173 с.
